Removal of Pax6 partially rescues the loss of ventral structures in Shh null mice.
نویسندگان
چکیده
Pax6 and Gli3 are dorsally expressed genes that are known to antagonize sonic hedgehog (Shh) activity. We have previously shown that dorsoventral patterning defects seen in Shh(-/-) mutants are rescued in Shh(-/-);Gli3(-/-) compound mutants. Here we investigate if the loss of Pax6 can also ameliorate defects seen in Shh(-/-) mutants. In support of this notion, we observe that the fusion of the cerebral vesicles seen in Shh(-/-) mutants is partially corrected in E12.5 Shh(-/-);Pax6(-/-) compound mutants. Investigation of pan-ventral markers such as Dlx2 also shows that, unlike Shh(-/-), a broad domain of expression of this gene is observed in Shh(-/-);Pax6(-/-) mice. Interestingly, we observe that while the expression of ER81 in the ventral telencephalon is expanded, the expression of Ebf1 is lost. This suggests that the rescued ventral domain observed in Shh(-/-);Pax6(-/-) mice is the dorsal lateral ganglionic eminence region. With regard to dorsal telencephalic patterning, we also observe rescue of the pallial-subpallial boundary, as well as a partial rescue of the dorsal midline. Together, our findings are consistent with Pax6 function being required for aspects of Gli3-mediated telencephalic patterning.
منابع مشابه
Patterning the dorsal telencephalon: a role for sonic hedgehog?
Division of the telencephalic vesicle into hemispheres and specification of the cerebral cortex are key stages in forebrain development. We investigate the interplay in these processes of Sonic hedgehog (Shh), fibroblast growth factors (Fgfs), and the transcription factor Gli3, which in its repressor form (Gli3R) antagonizes Shh signaling and downregulates expression of several Fgf genes. Contr...
متن کاملInteraction between hedgehog signalling and PAX6 dosage mediates maintenance and regeneration of the corneal epithelium
PURPOSE To investigate the roles of intracellular signaling elicited by Hedgehog (Hh) ligands in corneal maintenance and wound healing. METHODS The expression of Hedgehog pathway components in the cornea was assayed by immunohistochemistry, western blot and reverse-transcription polymerase chain reaction (RT-PCR), in wild-type mice and mice that were heterozygous null for the gene encoding th...
متن کاملPax6 Controls Progenitor Cell Identity and Neuronal Fate in Response to Graded Shh Signaling
Distinct classes of motor neurons and ventral interneurons are generated by the graded signaling activity of Sonic hedgehog (Shh). Shh controls neuronal fate by establishing different progenitor cell populations in the ventral neural tube that are defined by the expression of Pax6 and Nkx2.2. Pax6 establishes distinct ventral progenitor cell populations and controls the identity of motor neuron...
متن کاملCell cycle regulator E2F4 is essential for the development of the ventral telencephalon.
Early forebrain development is characterized by extensive proliferation of neural precursors coupled with complex structural transformations; however, little is known regarding the mechanisms by which these processes are integrated. Here, we show that deficiency of the cell cycle regulatory protein, E2F4, results in the loss of ventral telencephalic structures and impaired self-renewal of neura...
متن کاملHeterozygous truncating mutation in the human homeobox gene GSH2 has no discernable phenotypic effect.
Mutations in transcription factors with homeobox domains have been identified in a number of developmental disorders, for instance, mutations in PAX6 have been identified in patients with aniridia, mutations in HOX13 in patients with synpolydactyly, and mutations in MSX2 in patients with Boston-type craniosynostosis. The mouse GSH2 gene, like the related GSH1 gene, encodes a homeodomain contain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 16 Suppl 1 شماره
صفحات -
تاریخ انتشار 2006